Sleep problems Usher patient appears to be a hallmark feature of the disease

LEES ARTIKEL IN NEDERLANDS

Vision impairment is not the driver of fatigue and sleep problems

It was always thought that fatigue and sleep problems in patients with Usher syndrome are the result of increased efforts to compensate for their dual sensory impairment: limited vision combined with hearing loss. Researchers from Radboudumc show in Ophthalmology Science that this idea is incomplete. Besides severe problems with hearing and vision, sleep problems also seem to be a hallmark feature of the disease.

Patients with Usher syndrome experience major problems with vision and hearing. They are born profound deaf or hearing impaired and around puberty they also start to slowly lose their eyesight. These are the central features of the disease. The large individual differences in disease severity and progression are closely related to the underlying genetic defect and the type of Usher syndrome. “Besides hearing and vision loss, patients occasionally also encounter some other problems, like balance deficits, but these have been recognized as part of the disease,” says researcher Erwin van Wijk. “In addition, sleep problems and excessive fatigue are also regularly reported in the consulting room. The fatigue has always been regarded as a result of the dual sensory impairment that patients have to deal with. It’s generally assumed that the sleep problems often reported by patients are the result of their impaired light perception. After all, individuals with poor light perception gradually lose visual day and night rhythms, having a significant impact on their sleep quality.”

Poor sleep
Researchers at Radboudumc are in close contact with patients, mainly via the Dutch Ushersyndrome Foundation. “At one point we noticed that very many patients complained about sleep problems and fatigue”, says Van Wijk. “That intrigued us. Was perhaps something else going on than we always anticipated? Under supervision of Erik de Vrieze, Juriaan Metz, Rob Collin and myself, PhD student Jessie Hendricks started a survey to further investigate this. Fifty-six Usher syndrome type 2A (USH2A) patients and 120 healthy controls were subjected to a set of five validated questionnaires to assess sleep quality, sleep disorders, fatigue, daytime sleepiness and chronotype.” The results indicated that USH2A patients indeed experienced a strongly reduced sleep quality and that they were more often sleepy and tired during the day as compared to controls. But most strikingly, their sleep problems were not related to the severity of their visual impairment. Van Wijk: “These findings perfectly matched the reports of several parents of young USH2A patients, but that were never given a proper follow-up.”

Hallmark feature of Usher syndrome
At a first glance, it may seem only a gradual difference, but the finding is much more significant. Van Wijk: “Actually, it means that the ubiquitously reported sleep problems by USH2A patients are not primarily due to impaired light perception, but that these problems already exist in patients who still have a near normal eyesight. Sleep problems should therefore probably be considered as an additional hallmark feature of Usher syndrome, and not as a consequence of poor or deteriorating eyesight.” Of course, this conclusion based on questionnaires, needs further substantiation. This can be done, for example, through research in an existing zebrafish model for Usher syndrome. Zebrafish also have a distinct sleep pattern. Is it also disturbed? And is there evidence in the brain that Usher syndrome-associated proteins are somehow involved in regulating sleep? These research questions are currently being followed-up.

Improvement in quality of life
Van Wijk points out another aspect of the research. If sleep problems indeed turn out to be part of the disease, there might be a possibility to treat these problems. “Currently, sleep problems are not included in the daily care for Usher syndrome patients, because it is not yet being recognized as a hallmark feature of the disorder. As a result, the visit to a sleep clinic is often not reimbursed by health insurance companies. This hopefully changes based on the study published in Ophthalmology Science and the follow-up studies that are currently being conducted. Treatment of sleep problems will be a major step forward in improving the quality of life of Usher syndrome patients.”

——————————–

Paper in Ophthalmology Science: Evaluation of sleep quality and fatigue in patients with Usher syndrome type 2a – Jessie M. Hendricks, MSc, Juriaan R. Metz, Hedwig M. Velde, Jack Weeda, Franca Hartgers, Suzanne Yzer, Carel B. Hoyng, Ronald J.E. Pennings, Rob W.J. Collin, H. Myrthe Boss, Erik de Vrieze, Erwin van Wijk

Two groundbreaking projects awarded

LEES ARTIKEL IN NEDERLANDS

‘Moon Rocket Grant’ awarded to two groundbreaking projects

At this moment, there is no treatment yet for Usher Syndrome, a disorder that globally 400.000 people suffer from. In order to find a treatment that can stop, slow down or even reverse the process of becoming both deaf and blind, more knowledge and research into Usher Syndrome are needed.

Therefore Stichting Ushersyndroom (The Dutch Usher Syndrome Foundation) presents the ‘Moon Rocket Grant’: € 200.000, – for research into Usher Syndrome with a maximum of € 100.000, – for each study.

The Moon Rocket Grant
Stichting Ushersyndroom has launched the Moon Rocket Grant: a large pot of money for pioneering research into (a treatment for) Usher Syndrome. The objective of the Moon Rocket Grant from the Stichting Ushersyndroom is to effectuate a moonshot formulated by us: ‘A treatment for Usher Syndrome in 2025!’ This moonshot includes all types and subtypes of Usher Syndrome.

The study proposals must fit in with one of the four core values of the ‘Moon Rocket Grant’: Treatment, Knowledge, Diagnostics and Impact.
Every study (fundamental, translational or clinical) must lead to a treatment option, more knowledge and understanding, better diagnostics and an increase of the impact for every type of Usher Syndrome.

The Medical Advisory Council extensively tested and assessed all submitted study proposals. After this first assessment there was a second round: an on-line presentation with a short interview, after which the final selection for the award was made.

The Moon Rocket Grant goes to …..

Stichting Ushersyndroom announces with pleasure that two projects are eligible for the Moon-Rocket Grant 2022.

Prof Mariya Moosajee (UCL Institute of Ophthalmology, London, UK), will receive € 100.000, – for the project:

Prof Mariya Moosajee

“Large Gene Augmentation with non-viral episomal vectors for Usher syndrome”

Use of non-viral plasmid vectors for Usher Syndrome
It is well-known that the AAV (adeno-viral virus) vector is used for gene therapy, but this vector has a limit to the size of the gene. Most Usher genes are way too large for being packed into an AAV vector. When applying gene therapy to the retina of patients using the AAV vector, sometimes thinning of the retina (also called atrophy) can develop. Therefore alternative ‘packaging’ vectors are to be found for future gene therapies for Usher Syndrome.

Prof Mariya Moosajee has in cooperation with Dr Richard Harbottle (DKFZ German Cancer Research Centre, Heidelberg) developed a DNA plasmid (USH2A-S/MAR-vector) which can hold the full-length USH2A-DNA.
The DNA plasmid has been tested in a zebrafish model as well as in patient cells taken from a skin biopsy.

Prof Mariya Moosajee will use the ‘Moon-Rocket Grant’ to test the system of DNA plasmid in an already existing rabbit model for USH2A.
If the application of this alternative gene replacement strategy turns out to be successful, this will have a great impact for all inherited retinal diseases. After this study, it may be possible to start a phase 1 clinical trial for patients and it also may offer solutions for other large Usher genes. Gene therapy making use of DNA plasmid may have additional advantages; application (several times) with a limited immune response. Prof Mariya Moosajee hopes this approach will be safer and can avoid some of the complications that are seen in the current viral gene therapy. This project will at least take 2 years and has been budgeted at over € 200.000. Moorfields Eye Charity and Cure Usher will also be contributing to this project. With the contribution of the ‘Moon Rocket Grant’ from the Stichting Ushersyndroom the budget has been covered and the study can start.

The second project to be financed by the Moon Rocket Grant is the study of Monte Westerfield (Neuroscience, university of Oregon) and Erwin van Wijk (Radboud University Medical Center, Nijmegen, the Netherlands) entitled:

Prof. Monte Westerfield and Dr. Jennifer Phillips

“Exon-skipping as a future treatment for USH1F associated retinal disease” 

In this collaborative study Monte Westerfield of the University of Oregon and Erwin van Wijk of the Radboud UMC will develop and evaluate a treatment for Usher syndrome type 1F-related retinal disease based on the exon skipping methodology.

About 20.000 people worldwide lose their eyesight as a consequence of PCDH15 mutations. This condition is named USH1F.
The PCDH15 gene codes for the protocadherin 15 protein (PCDH15 protein) and is essential for normal eyesight and hearing. The PCDH15 protein contains multiple predicted extracellular cadherin (EC) domains. Many USH1F patients have mutations in the region encoding the EC domains number 6 (EC6) and 7 (EC7), resulting in a non-functional or even absent PCDH15 protein.

The ultimate goal of the researchers is to develop a treatment that halts the progression of PCDH15-associated visual dysfunction. For this, they will adopt the principle of “exon skipping” and develop a “genetic patch” that will instruct the light-sensitive cells inside the eye to skip the region of the PCDH15 gene that codes for the EC6 and EC7 domains. In this way a somewhat shorter but hopefully still functional PCDH15 protein is produced, specifically lacking the EC6 and EC7 domains.

A pilot study exploring the therapeutic potential of “exon skipping” for USH1F was conducted some years ago. In this study the researchers targeted another domain in the protein, but this did not result in a restored function of the PCDH15 protein. With the knowledge gained in the past few years the researchers can now better predict whether or not the remaining protein after exon skipping will be functional. Based on these improved prediction tools they now opt for “skipping” the region encoding EC domains 6 and 7.
In previous studies of both Monte Westerfield and Erwin van Wijk it was shown that zebrafish are suitable animal models for this study. To obtain functional proof for the proposed concept of skipping the EC6-EC7 encoding region of PCDH15, the researchers aim to remove this part of the PCDH15 gene from the zebrafish genome and analyze whether these ‘treated’ zebrafish will have a better eyesight than the untreated mutant zebrafish with USH1F mutations.

This research project was budgeted at € 100.000, – for a period of 24 months.

The objective of Stichting Ushersyndroom is to finance scientific research that is to lead to a treatment that will show down, stop of even reverse the deterioration of hearing and eyesight. Apart from this, the foundation also (financially) supports the improvement of the quality of life, the growth of knowledge and information about Usher Syndrome and to enhance the contact between fellow-sufferers.

DONATE HERE

You can also donate directly to Stichting Ushersyndroom by using the QR code.

 

 

 

Study into the best approach of USH1B

LEES ARTIKEL IN NEDERLANDS

Stichting Ushersyndroom (Dutch Usher Syndrome Foundation) announces with pride its financing of a study that will test the best approach for USH1B (gene) therapy by making use of, among others, patient-specific cell models and a large animal model. This may take a (gene) therapy for USH1B to the pre-clinical phase. Dr. Kerstin Nagel-Wolfrum, who works at the Johannes Gutenberg University in Mainz, will lead this project.

Children suffering from Usher Syndrome type 1 (USH1) are born deaf and with a non-functioning organ of balance (the vestibular system). The first signs of loss of eyesight, such as night-blindness and a decreasing field of vision, will present themselves later in the childhood period. USH1 is most often caused by mutations in the MYO7A gene (USH1B). About 14% of all people suffering from Usher Syndrome has type 1B. The MYO7A gene is a very large gene and the Myosin protein is also called a motor protein. Is has a ‘head and a tail’ and therefore it must be replaced or processed as a whole when developing a gene therapy.

New approaches
The large size of the MYO7A gene makes classical gene therapy using an AAV vector impossible. However, new approaches, including double and triple AAV vectors, mini-genes, prime editing, translational read-through and exon skipping, are promising new alternative therapeutic strategies. Please go to the Knowledge portal for further reading.

From skin biopsy to mini-retina
With the help of a skin biopsy from a USH1B patient (fibroblast), Dr Nagel-Wolfrum can further develop these molecular cells into a retinal pigment ephithelium (RPE) and a retinal organoid (RO). The retinal pigment epithelium is found between the retina and the choroid and it clears away the waste products of the rods and cones in the retina. The retinal organoids are also called the mini-retinas.

The possibility to model retinal disorders by means of fibroblasts into mini-retinas created unprecedented opportunities in the research area.

Dr. Kerstin-Nagel-Wolfrum

Gain insights and test therapies
By making use of the ‘mini-retinas’, Dr Kerstin Nagel-Wolfrum will gain more insight into the mechanism that damages the retina and causes loss of eyesight. Apart from this, she wants to subject these retinal organoids (mini-retinas) to various therapies in order to test them for their effectiveness and functionality. Dr Nagel-Wolfrum will also test the mini-genes by conducting an AAV vector-based gene therapy.

On to the pre-clinical phase
A large animal model, a USH1B pig, has already been developed and is ready for testing possible therapies. Dr Nagel-Wolfrum will apply the therapy that the pre-study with the retinal organoids (mini-retinas) has shown to be the most effective one when doing research on the pig model. This study is called the pre-clinical phase. If this pre-clinical phase leads to positive results, this can be promising for a possible therapy for patients.

In this project Dr Kerstin Nagel-Wolfrum closely cooperates with:

  • U. Wolfrum (Institute for Molecular Physiology, JGU Mainz, Germany): USH1B pig model
  • S. Gerber (University Medical Centre Mainz, Institute of Human Genetics, Germany): Bioinformatics
  • M. Cheetham (UCL, London, United Kingdom): iPSC-RPE and iPSC-RO generation
  • V. Kalatzis (Institute for Neurosciences of Montpellier, France): iPSC-RPE and iPSC-RO generation
  • J. Gopalakrishnan (Heinrich-Heine University Düsseldorf, Germany): brain organoids

This project will have a duration of 1 year and has been budgeted at
€ 100.000, -. Stichting Ushersyndroom hopes that this study will contribute to the development of one or more effective treatments for people suffering from Usher Syndrome type 1B.

View the PowerPoint presentation about this research by Dr. Kerstin Nagel-Wolfrum

Tears as a source of information?

LEES ARTIKEL IN HET NEDERLANDS

Stichting Ushersyndroom and Usher Syndrome Ireland

finance research into USH1b

Can tears provide information that may be important for improving diagnostics and monitoring in future treatments of USH1b patients? In the pilot study “Investigating the exosome content as a novel marker for Usher syndrome 1b” Dr. Irene Vázquez Domínguez, who is working at the Radboudumc (Nijmegen, the Netherlands), will investigate tears. By doing this, she wants to assess whether there is any indications on tears that can be employed as a source of information and therefore may contribute to not only increase the current knowledge of the disease but also to allow better prediction of the development of Usher Syndrome type 1b.

This study will be mainly financed by the Usher Syndrome Foundation and partially co-financed by Usher Syndrome Ireland. If this study produces any positive results, the study of tears may lead to new strategies in USH research.

Tears
Tears are human body fluids. Tears are rich of proteins, lipoproteins and exosomes. Exosomes are small bladders which contain a wide range of molecules inside like RNA molecules. Thanks to that, exosomes are important for the communication between cells. In addition, they can be isolated from tears, which allow the study of their content.
As tears can be collected in a non-invasive way (without entering the body) from patients, they allow for easy and patient-friendly isolation of exosomes.

New biomarker for research
Biomarkers are measurable indicators that may indicate that someone is ill, predict how serious the illness will be or show whether a treatment is effective or not.

By making use of tears, the researcher Dr. Irene Vázquez Domínguez wants to find out whether biomarkers can be found that may be used to improve the diagnostics and to better predict the development of Usher Syndrome type 1b. In the long term, point-of-care tests could be developed on the basis of these biomarkers. Point-of-care tests offer care professionals the possibility to start, monitor or adjust a future development.

The MYO7A geneWe know that more than 10 genes are involved in Usher Syndrome.
This new study is focused on one of these genes, being the MYO7A gene. This gene is responsible for the production of a specific protein: Myosin, which keeps the photoreceptors (the rods and cones) of the retina alive.

Some children having mutations in the MYO7A gene do not develop retinitis pigmentosa in their childhood and puberty beside their hereditary deafness. Here we speak of non-syndromic deafness 

How can this be explained and/or predicted? The answer to this question may lead to better diagnostics. Sometimes it is really difficult for the parents to cope with the uncertainty whether or not their child will develop retinitis pigmentosa (RP).

Increasing the present knowledge about the MYO7A gene is necessary for finding new biomarkers that can be used for making the diagnosis and for predicting the development. At the same time, this knowledge can also be used in monitoring after a treatment.

Isolation of exosomes
Usher Syndrome falls within the group of Retinal Dystrophy diseases (RDs). The deterioration of the eyesight is caused by the dying of retinal cells, such as the light-sensitive photoreceptors and/or the retinal pigment epithelium (RPE).
Within the retina RPE cells are responsible for the majority of the production of exosomes. Previous studies indicated that tears may be rich of RPE exosomes.

The goal of the study is to isolate exosomes from tears as well as from RPE cells. Then, the content of both will be studied. First, the control group will be compared with the material from USH1b patients. Then the information from tear derived exosomes and RPE derived exosomes will be also compared to assess if, as it was suggested before, they provide the same information. If this turns out to be successful, this study will show that exosomes can be used as a means to develop new strategies in USH research.
Finally, this study will also show whether tears can be a source for research. This would help to find an easy and patient-friendly way to isolate exosomes.

This one year study was budgeted at  € 75.000, -.
Stichting Ushersyndroom (Dutch Usher syndrome Foundation) will finance this study with co-financing from Usher Syndrome Ireland.

 

Watch the powerpoint presentation by
Dr. Irene Vázquez Domínguez 

Research “Development of exon excision therapy”

LEES ARTIKEL IN NEDERLANDS

This study aims at permanently removing specific exons, which include hereditary mutations when patients are concerned, from the DNA of the photoreceptors in the retina and/or the hair cells of the inner ear with the help of the CRISPR/Cas9 gene editing technique. The objective of this strategy is to stop the deterioration of eyesight (and hopefully in the longer term that of hearing as well) with larger groups of patients who have mutations in these exons of the USH2a gene with a one-off treatment.

Dr Erwin van Wijk and his colleague Dr Erik de Vrieze (both working at Radboudumc) will study the effect of a new strategy for treating Usher Syndrome. The research group of these scientists will cooperate with Vasiliki Kalatzis of the University of Montpellier in France and apply the CRISPR/Cas9 in this study.

Development of exon excision therapy
Exon excision is a new treatment strategy for modifying genes that code larger structural proteins consisting of chains of repetitive protein domains. These protein domains are the functional parts within a protein. The idea is that a protein can do without one or more of these domains without losing its function. This can be compared with a chain. A large number of separate links that individually look the same together forms a chain. When a few links are taken out, the chain will indeed become a bit shorter, but it will still be functional.
At least four of the known Usher Syndrome-related proteins, being usherin (USH2a), ADGRV1 (USH2c), cadherin23 (USH1d) and protocadherin15 (USH1f), consist of a chain of repetitive ‘links’, called protein domains. Using the molecular pair of scissors ‘CRISPR/Cas9’, the genetic regions in the USH2a gene that code for such a repetitive protein domain and which also include hereditary defects when patients are concerned will be permanently removed from the DNA of photoreceptors. This will shorten the USH2a protein by one or more ‘links’ and the study is meant to find out whether it will still be functional. Mutations in the genes related to USH2a, USH2c, USH1d and USH1f together account for the underlying cause in as many as 75% of all Usher Syndrome patients! This emphasises the potential of this therapeutic strategy.

Jorden Leuverman: “It is particularly great to know that the interview has also resulted in something much bigger than just my sponsor campaign”

Personal involvement
It was an article in the Tubantia, which caught the eye of Inge Wessels. In the newspaper there was an interview with Jorden Leuverman in which he told about living with Usher Syndrome. Inge Wessels: “I was deeply touched. Jorden was very hard of hearing already and he would also slowly lose his eyesight.” Jorden was diagnosed with Usher Syndrome, just like his grandfather was. As Jordan knows the impact of this, he started a sponsor campaign for the Usher Syndrome Foundation. Together with his running buddy he participated in the footrace in Zutphen, the Netherlands, and with this collected € 5000.- for the Usher Syndrome Foundation, hoping that there will timely be a treatment for Usher Syndrome.
Inge Wessels: “When I read the interview in the newspaper, I felt such a deep respect for this man. I know from experience what it means to be deaf in daily life. Much information can be received by looking at the mouths of people talking and other non-verbal communication. When Usher Syndrome takes away your eyesight as well, I think this is really terrible.”

Can I help?
Inge Wessels supported the sponsor campaign of Jorden and also made a donation to Stichting Ushersyndroom. “Can I help you with the funding of a promising study?” Inge Wessels asked early this year.
Jorden: “I hoped to collect as much money as possible for Stichting Ushersyndroom with my sponsor campaign. This amount suddenly became a lot higher thanks to the fact that I was interviewed by a reporter of the Tubantia newspaper. It is particularly great to know that the interview has also resulted in something much bigger than just my sponsor campaign.”

Stop the process of becoming deaf and blind
About 400.000 people globally suffer from Usher Syndrome, of which about 1.000 in the Netherlands. Faults in about ten different genes lead to Usher Syndrome. These genes code for proteins that are crucial for the functioning of the eyes and the ears. At this moment, there still is no treatment for any type of Usher Syndrome that can slow down, stop or recover the process of becoming both deaf and blind.

Reggeborgh supports research the 4-year study ‘Development of the exon excision therapy’. We are really grateful to the Reggeborgh for its donation for this promising study!

f.l.t.r. Shannon Leuverman, Erik de Vrieze, Ivonne Bressers, Jorden Leuverman, Erwin van Wijk

New research: testing gene therapy

With extra large vectors on mini retinas 

Prof. Dr. Jan Wijnholds and promovendus Rossella Valenzano

Stichting Ushersyndroom [ Dutch Usher Syndrome Foundation] is funding the majority of the new research “Genetic drugs preventing blindness due to loss of USH2A function” which has recently started. The research team led by Jan Wijnholds, who works at the Leiden University Medical Center (LUMC), will test two treatment methods on ‘mini-retinas’ made from human stem cells. The researchers want to determine if the light sensitive cells in the mini-retinas can be activated by the light-sensitive cells after administration of gene therapy. Can the USH2a gene in the retina be replaced or is it also possible to repair the defective gene at the same time?

 

Gene therapy looks very promising and developments in this area are moving very quickly. It is a treatment method for hereditary disorders where healthy copies of genes, with errors (= mutations) have been found, in patients are replaced or repaired in the cells of an organ.

Research shows that after gene therapy, the retina can make normal connections with other cells, which can lead to a light response again. After delivering a healthy copy of the gene or repairing the gene, the retina makes the proteins it needs to see properly. With gene therapy you treat the entire gene so that it does not matter what kind of mutations you have.

Means of transport for the large USH2A gene
In gene therapy, a healthy copy of the gene is delivered to a specific location in the retina of the eye using a molecular truck, or a means of transport. This is usually done using a virus that has first been rendered harmless so that a vector remains, a kind of ‘packaging’. The most commonly used vector is the adeno-associated viral vector (AAV).
However, there is a problem. The USH2A gene is much too large for a normal AAV vector, so another alternative must be sought to deliver the large healthy copy of the USH2A gene into a patient’s eye.

Large trucks as vector
Previously, in collaboration with Dr Manuel A.F.V Gonçalves (Department of Chemical Cell Biology), the researchers in Jan Wijnholds’ lab at the LUMC, have developed new vectors into which very large genes fit, the so-called High-Capacity Adenoviral Vectors (HcAdV).
The large USH2A gene fits completely into this vector. As a result, this vector can serve as a molecular truck and can be used as a vector for gene therapy.

Mini retinas
In the research project “Genetic drugs preventing blindness due to USH2A function”, human mutant USH2A iPSC retinal organoids are used to test several new high-DNA capacity gene therapy vectors. These USH2A ‘organoids’ are ‘mini-retinas’ made from cell lines derived from USH2A patients.

These ‘mini-retinas’ are used because they allow to study the effect of loss of USH2A protein (Usherin) in the cilium of the photoreceptor. The cilium transports the essential proteins in the retina. These ‘organoids’, made from patient cell lines, could also be used in the future to test gene therapy for retinal disorders due to mutations in other Usher genes.

Replace gene and/or edit gene
In the research project of Jan Wijnholds, two types of gene therapy are being tested on the ‘mini retinas’. The first type of therapy candidate is an HcAdV vector containing a healthy copy of the USH2A gene that, after delivery, replaces the defective USH2A gene in the retina. We call this gene replacement therapy. The healthy copy of the gene must activate the gene in the photoreceptors of the ‘mini retinas’, the ‘organoids’.

The second type of therapy candidate is an HcAdV vector containing ‘a repair kit’ and, after delivery into the retina, repairs the defective USH2A gene in the eye itself. This is also known as gene editing therapy, CRISPR-Cas9 is used for this. CRISPR are pieces of DNA with codes that can detect the defective gene. The Cas9 is an enzyme that ‘cuts’ out the defective gene and ‘sticks’ a new healthy piece of DNA in it.

Both the CRISPR and Cas9 are transported in a cassette and delivered into the retina by an HcAdV vector. The USH2A gene is edited and repaired at its destination.

Promises for large groups of patients
Both technologies for genetherapeutic application are not dependent on the type of mutations in the USH2A gene. If the USH2A gene is found to be expressed in the light-sensitive cells of the mini-retinas thanks to one or both techniques, the treatment may become available to all patients with USH2A. When more money becomes available for research for these two techniques , the research team of Jan Wijnholds could also test these for other Usher genes, and could possibly also be a solution for patients with mutations in Usher genes other than USH2A.

The mission of Stichting Ushersyndroom
Annouk van Nunen, secretary of Stichting Ushersyndroom, is very pleased with the start of this research. Stichting Ushersyndroom’s mission is “In 2025, Usher Syndrome will be treatable!”.Annouk: “We want all patients to have a realistic prospect in 2025 of a treatment that can slow down, stop or even restore the further deterioration of their hearing and vision”.

The big challenge for scientists is to explore multiple research routes in order to eventually develop a treatment for all people with Usher syndrome. Stichting Ushersyndroom therefore stimulates as many lines of research as possible, so that people with Usher Syndrome can make their dreams come true. “It is fantastic that so much research is being done into Usher Syndrome in the Netherlands. This type of research is hopeful for all USH2A patients. But if it works, it could also be a solution for patients with mutations in other Usher genes, Annouk van Nunen.

This four-year study, which started in November, has been budgeted at € 250.000. Stichting Ushersyndroom is contributing € 85.000 to this research. Other funds that have contributed are: Rotterdamse Stichting Blindenbelangen, LSBS, Stichting Blindenhulp and a partial contribution from the LUMC Ophthalmology Departmen

Minigenes USH2A: General status

By Erwin van Wijk, lead researcher Radboudumc

Errors in the code of the USH2A gene explain the development of Usher syndrome in about 50% of all patients.
In addition to Usher syndrome, these errors can also lead to non-syndromic Retinitis Pigmentosa; loss of sight but without the hearing problems.
The USH2A gene contains the code for the protein usherin. After translation, the mistakes in the genetic code of USH2A also end up in the usherin protein, with the result that this protein loses its function and people lose their sight (and hearing). Giving patients a new copy of the USH2A gene that does not contain these errors could be an obvious solution. This is the principle of gene therapy.

However, for USH2A this is not as easy as it sounds.

New copies of genes are delivered with inactivated viruses, into which the genes are packaged. These viruses can be seen as small trucks. However, the loading platforms of the viruses are small. So small, in fact, that the USH2A gene simply doesn’t fit. Developing a classical gene therapy for USH2A is therefore extremely difficult from a technical point of view.

As an alternative, we have the “genetic patch” methodology, also known as exon skipping. The first patch tested is performed on patients tested in clinical trials.

Good news, but only for a limited target audience. QR-421a works for people with errors in a specific part of the USH2A gene: exon 13. This method can be extended to other USH2A genes and even to other Usher genes, but always remains only applicable for a limited number of patients.

Is there no alternative?

A few years ago we started with a new idea: can we not artificially shrink the USH2A gene, so that it fits in the loading platform of a virus and can therefore be delivered to the place where it is needed and can be used by all people with USH2A-related retinitis pigmentosa?

The main advantage is that, if effective, this method may be of value to all patients with USH2A-related retinal problems. The project “Minigenes USH2A” was born and made possible in part by a contribution from the Dutch Usher Syndrome Foundation (Stichting Ushersyndroom).

Four shortened USH2A genes were made and inserted into the retina of the USH2A zebrafish model. The shortened usherin proteins made from these minigenes in the zebrafish eye ended up in the right place in the light-sensitive cells of the retina, rods and cones. Functional tests by measuring electroretinograms (= ERG) indicate that these mini-usherin proteins are indeed (partially) functional. We have patented these results. How well they work remains to be investigated, but it is a promising starting point for further developing this method.

In the meantime, we are also looking into cultured cells to see where these mini-proteins go and whether they do not accumulate in a place where we would not want this. Fish, of course, are not people. It is therefore important to translate these results into models that are closer to humans.

We are currently trying to establish a partnership with a company that can help us take these important next steps.

Read also:

Swim at night and take a nap during the day

Zebrafishes suffering from USH2A have a disturbed sleep rhythm

Are patients suffering from Usher Syndrome so tired because of the huge efforts made in connection with their poor hearing and eyesight or is something else going on? Researchers in the Radboudumc try to find an answers to this question. There are indications that perhaps there is more going on, a genetic cause. The people of the Radboudumc have been busy trying to unravel Usher Syndrome for decades already. This summer, the research into ‘The recognition of sleeping problems with patients with the USH2A gene’ will start. Stichting Ushersyndroom (Dutch Usher Syndrome Foundation) will finance a large part of this study.

Researchers have used the zebrafish model since several years. In the laboratory of the Radboudumc both healthy zebrafishes and fishes suffering from Usher Syndrome are swimming about. Researchers noticed that the sleeping pattern shown by the fishes with a mutated USH2A gene differs from that of their healthy congeners. Actually, they sleep more often during the day and less often at night. According to Erwin, project leader of the zebrafish lab and engaged in research into Usher Syndrome for years already, the sleeping fishes are quite remarkable. It is day, there is sufficient light in the aquarium and the eyesight of the fishes is still good enough to be able to properly see light and dark. Still, they regularly fall asleep during the day.

Sleep-wake rhythm
The sleep-wake rhythm is strongly controlled by light. The retina sends signals to the pineal gland in the brains to make the sleeping hormone melatonin when the light intensity decreases. It is known that a decreasing light perception can disturb this system. However, RP patients regularly mention sleeping problems and fatigue in an early stage already, independent of the seriousness of their visual impairment.

Fatigue
Usher Syndrome is also called ‘fragmentary observation’: both hearing and seeing are done in small fragments that subsequently have to be made into a whole. This is hard work for the brain. Therefore it is not surprising that many people suffering from Usher Syndrome are tired quickly and have a higher chance of getting overstimulated and loosing energy. The energy-absorbing process of continuously compensating the one sense with the other leads to fatigue.

Sleep enables the body to recover, such as replenish energy sources, adjust muscles and other cells and reduce stress. While sleeping, we also process all we have seen, heard and done during the day. The brains are stimulated all day and have to process all this information.

Quality of sleep
The quality of sleep depends on the deep sleep, the so-called REM sleep. This makes the body recover. A good night’s rest means quickly falling asleep and sleeping all night through. In case of insufficient REM sleep, you do not feel refreshed well when you have to get up. Non-optimal REM sleep over a longer period will lead to chronic fatigue with a risk of other physical complaints.

Not tired at all
At the end of the day, when it begins to grow dark and the lights are switched off in the zebrafish lab, the last round is made in the lab. Many fishes have become less active already and are hanging around in the water without moving. They also do not react when Erwin van Wijk is walking along the aquariums.

When visiting the zebrafish lab in the evenings, he tries to make as little noise as possible and the lights are dimmed. When he switches off the lights to close the lab and leaves the lab, some groups of zebrafishes stay awake and active. The zebrafishes with mutations in the USH2A gene are not going to sleep, they are not yet tired at all.

Expression in the pineal gland
The most frequently mutated RP genes (USH2A and EYS) are both highly expressed in the pineal gland of various animal models. Researchers show that the proteins of these genes involved are not only present in large quantities in the eyes and ears, but in the pineal gland as well. This may mean that the proteins concerned also play an important role in the pineal gland and in the regulation of the day and night rhythm.

Zebrafishes with mutations in the USH2A gene show a deviating sleep-wake rhythm, while these test animals hardly show any retina degeneration.
Based on these findings researchers suspect that the sleeping problems of these groups of patients are the cause of the disorder and not just the consequence of a reduced visual function.

Comprehend
A treatment for sleep-related complaints with people who have mutations in the USH2A and EYS genes, may substantially improve their quality of life. In this project clinical and fundamental research are combined in order to comprehend these problems. The common results of these two research lines may give some tools to improve the care of patients suffering from RP and Usher Syndrome together with ophthalmologists and sleep experts.

Various research institutes are involved in this project: the Radboudumc under the leadership of Erwin van Wijk, Slaap/Waakcentrum SEIN, Hospital Gelderse Vallei, Radboud University and the Donders Institute.

This four-year study will start this summer and the costs are estimated to be € 285.000,=.  Stichting Ushersyndroom (Dutch Usher Syndrome Foundation) makes a contribution of € 125.000 with co-financing by the Dutch Dr. Vaillantfonds. Other funds that have contributed are: LSBS, ANVVB, Support Fund UitZicht (Beheer ’t Schild), the Gelderse Blindenstichting, FNWI/IWWR.

Onderzoekers en patiënten met Ushersyndroom overhandigen een cheuq ter warde van €285.000 voor het slaaponderzoek. Ze staan voor de kast met aquaria met zebravissen.

In the zebrafish lab Radboudumc. From left to right: Erik de Vrieze, Thijs Bouwman, Niels Bouwman, Ivonne Bressers. Jessie Hendricks, Devran Braam, Erwin van Wijk and Juriaan Metz.

Stichting Ushersyndroom [Dutch Usher Syndrome Foundation] Awards Grant to Usher III Initiative to Support Patient Database

A global Usher III patient (USH3) database for future clinical trials

This year, the North-American foundation Usher III Initiative has taken preliminary steps towards collecting the information necessary to establish the first comprehensive global USH3 patient database. This resource will be critical to the design of future clinical trials and will significantly advance knowledge of the disease and its impact on patients. Dr Ronald Pennings from the Radboudumc is one of several physicians and experts around the world collaborating with the Initiative in this effort. 

Cindy Elden and her father Richard, co-founders of the Usher III Initiative

Usher III Initiative
Usher III Initiative is a US based non-profit organization dedicated to developing a treatment for Usher Syndrome type 3 a rare genetic disorder characterized by progressive loss of both hearing and vision. It is estimated that over 400.000 people around the world suffer from Usher Syndrome, of which type 1 and 2 are the most common types. Only 2 percent of the patient population suffers from USH3, which is most prevalent among Finnish and Ashkenazi Jewish populations. 

Preliminary clinical trial design
The Initiative has developed BF844, a new therapeutic candidate for the treatment of USH3.
The Initiative is completing pre-clinical toxicity studies to demonstrate that BF844 can be safely administered in humans in compliance with US Food and Drug Administration (FDA) regulations. They expect that clinical trials will commence in 2022. These studies are supported by a $1M grant the Initiative recently received from the Foundation Fighting Blindness.

Consortium
Together with the Usher III Initiative and a global consortium of physicians, Dr Ronald Pennings will participate in the establishment of the USH III Patient Database. “Aggregating comprehensive genetic and  clinical data on USH3 patients is necessary to determine inclusion and eligibility criteria as well as the most effective design for clinical trials.”, commented Cindy Elden, President and Co-Founder of the Initiative and an USH3 patient.

Collaboration
Stichting Ushersyndroom [Dutch Usher Syndrome Foundation] has committed to making a $ 10,000 contribution to support this effort. This grant aligns with the mission of the Stichting Ushersyndroom, to find treatments for all types of Usher syndrome.  

“Usher Syndrome is a serious disorder, which has a deep impact on the lives of patients and their social environments.  We want to stop this disorder from the bottom of our hearts”, commented Ivonne Bressers, chairwoman and co-founder of the Stichting Ushersyndroom and USH2 patient. “We are happy to be able to participate in an international study for USH3-patients.”

Cindy Elden: “On behalf of the Usher III initiative, but also personally, I find it very inspiring to meet other people with Usher syndrome who would like to be active in the search for a treatment for all of us!”

The consortium will not be collecting any information that identifies specific patients, so the database cannot be used to recruit participants for clinical trials. Patients interested in participating in future clinical trials are encouraged to register with My Retina Tracker and the Ush Trust. Once trial investigators and sites have been identified, treating physicians may also recommend individual patients to the appropriate officials. Pursuant to global patient privacy protections, the Usher III Initiative cannot receive confidential patient data. If patients, family or friends want to connect with the Usher III Initiative for more information, they are invited to email info@usheriii.org or connect on Facebook.
Dutch patients can contact Stichting Ushersyndroom for more information on Usher syndrome and contact with fellow sufferers.
For medical advice on Usher syndrome, information on (preclinical) developments of therapeutic approaches to treat Usher syndrome or additional (genetic) diagnostics, they can reach out to the expertise center of the Radboudumc via ushersyndroom@radboudumc.nl. 

Related links:
www.usheriii.org
www.radboudumc.nl/expertisecentrum/ushersyndroom
www.ushersyndrome.nl
www.ushersyndrome.nl/knowledgeportal

How are things going with the ‘minigenes USH2c’ study?

By now, the USH2c minigenes study was started almost a year ago. A four-year study which was made possible by co-financing of the Stichting Ushersyndroom, CUREUsher and LSBS. Thanks to many contributors this study was started early in the year 2020 in the research group of Erwin van Wijk, in the Radboudumc. Merel Stemerdink is working as a doctoral candidate on the development of a minigene therapy for USH2c. In this news report, Merel tells more about the progress that she has been able to make with respect to the study during the past year! 

Merel in the aquarium holding the tank in which the USH2c zebrafishes are swimming.

The minigenes
USH2c is caused by mutations in the USH2c gene (ADGRV1) and these faults in the gene result in progressive hereditary deafblindness. In the eye these faults make the retina slowly die. The objective of the project is to develop a minigene therapy specifically for treating this retina degeneration. 

What makes the development of a therapy a challenge is that the ADGRV1 gene is really big, so big that it cannot be packed in the ‘lorry’ (‘viral vector) that is to deliver a new, healthy copy of the gene at the correct place in the retina. This is the reason why we are making an artificial short version of the ADGRV1 gene. These minigenes will be small enough to fit in a ‘viral vector’, but at the same time the minigenes have to function well enough to make good the negative effect of the mutations in the ADGRV1 gene. 

Based on various bioinformatics analyses we have developed four ADGRV1 minigenes. These minigenes contain the most important pieces of the healthy ADGRV1 gene. In the past year, we managed to isolate all these individual pieces of ADGRV1 and I will start assembling these parts and so eventually make the minigenes in the coming months. However, this obviously is not all: after this we will study whether these minigenes are actually able to take over the function of the mutant ADGRV1 gene.  

Zebrafishes with USH2c
In order to test the therapeutic effect of minigenes, we made an USH2c zebrafish last year. Zebrafishes also have the ADGRV1 gene and we see with healthy zebrafishes that ADGRV1 is expressed in the retina, just as with humans. By means of CRISPR/Cas-9 technology, we deliberately made small faults in the ADGRV1 gene of zebrafishes so as to simulate the disease in the fish. Last month was really exciting, as we started the first experiments to see of the faults made in the gene really prevent the ADGRV1 protein from being produced in the eyes of the USH2c zebrafishes and this appeared to be the case indeed! In the coming year, we will do additional research in order to get a complete picture of the visual function of this USH2c zebrafish. This is important because this will be the basis of the testing of the minigenes in the USH2c zebrafishes so as to allow us to see if and to what extent the minigenes are able to recover the functioning of the retina. 

This means that the first important steps were taken in the past year: the minigenes have been developed and the first results indicate that we have developed a zebrafish model suitable for testing the minigenes! 

Do you have any questions about the study further to this news report? You can contact Merel via the mail.

 Also read: